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This paper holds that one deep reason of the large success of a new scientific field, called Data 
Mining or Knowledge Discovery in Databases, is the admittance that computer programs can perform 
inductive thinking, induction being the process by which new models of the reality are built.  

The beginning of this paper discusses the difference between numerical induction, where the 
model is built in terms of variables taking an infinity of numerical values, and symbolic induction 
where the model is built in terms of variables taking a finite (preferably, only a few) number of 
values, or even by Boolean variables. 

The second part of the paper presents an instance of symbolic induction, based on an 
evaluation of the interestingness of the rules induced from examples using Inductive Text Mining 
(ITM). The better-known deductive text mining is called Information Extraction, and amounts to 
finding instances of a predefined pattern in a set of texts. ITM looks for unknown patterns or rules to 
discover inside a set of texts. We mainly discuss two of the problems of ITM: building ontologies of 
concepts, and extracting patterns.  

1. INTRODUCTION:  AUTOMATIC  INDUCTION  IS  VERY  DIFFICULT 

We have to deal with two different problems, the first one of the difference 
between deduction and induction in Computer Science (CS) software, and the 
second one of the difference between numerical and symbolic software. This leads 
to four main different approaches to automated inference, the four of them have 
been explored. 

CS has favored the production of deductive software, induction being the 
reserved domain of the humans. Moreover, computers are mostly used as “number 
crunchers.” It follows that deductive numerical software constitutes the main bulk 
of CS products.  

Deductive symbolic software receives a large amount of attention, mostly 
from academics. The theoretical part of CS calls this effort Automated Deduction, 
while the more applied side called it Expert Systems in the 80’s, but left this 
wording to prefer nowadays either Knowledge Management, or Deductive Data 
Bases. The difference between numerical and symbolic deduction, somewhat 
roughly speaking, lies in the environment they use in order to perform the 
reasoning. Numerical deduction relies almost entirely on the semantics of real 
numbers, while symbolic deduction defines several semantics – different from the 
one of the real numbers – and performs only the inference steps compatible with 
the allowed semantic. The exact representation of knowledge is thus not 
significant, symbols can be numbers or letters, only the way to manipulate the 
symbols is significant. 
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Both numerical and symbolic induction generate new models as an output of 
their computations. At the beginning of their history (and still today for some 
people) they had tendency to differentiate each other in the same way as the two 
deductive paths did. The field known as Inductive Logic programming (ILP) is a 
good example of a field where non numerical data are handled following the rules 
of first order logic, up to the point that handling numbers is very cumbersome for 
ILP. On the contrary, and since the birth of Data Mining (DM), it has been 
acknowledged that both use, in fact, various numerical and logical techniques to 
perform or to validate their inductions. Thus the difference between numerical and 
symbolic induction does not lie in the way the computations are performed (as we 
said it is roughly the case for deduction), but rather in the form into which the 
induced model is delivered to the user.  

Numerical inductive techniques build models expressed in terms of numerical 
infinite valued variables. As a consequence, the models they build are hardly 
comprehensible to the person non expert in these inductive numerical techniques. 
Three different fields have been developing these techniques. Outside CS, Statistics 
has developed the so-called Exploratory Statistics, also called Data Analysis when 
more linked to CS. Within CS, the people dealing with pattern recognition 
developed a very efficient tool, called the perceptron, which is able to treat linearly 
separable data. A major success was achieved in 1962, when Novikoff was able to 
evaluate the rate of convergence of the perceptron in terms of (R/ρ)2, where R is 
the radius of the data, and ρ is of the order of the smallest distance between two 
data points belonging to different classes. As we shall see, this result is of large 
practical importance in the success of the modern systems. The treatment of non 
linearly separable data has been performed by a development of the perceptron 
known as Neural Networks. Around 1989, took place a convergence between the 
statistical approach and the neural networks ones which can be essentially 
attributed to Vapnik’s vision of statistical learning (Vapnik, 1995). Since 1995, it 
has led to the development of many numerical learning discriminant systems, all 
gathered under the name of Support Vector Machines (SVM). Novikoff’s theorem 
applies to the perception only, and the first theoretical result giving a good 
approximation of the real nature of learning for all learning discriminant machines 
is that, provided the space of hypotheses shows the property of finite Vapnik-
Chervonenkis dimension dVC (see, for instance, Vapnik, 1995; Christianini and 
Shawe-Taylor, 2000), provided some learning has been taking place on a first set 
of examples, it is possible to ensure that the learned discrimination ability will not 
degrade, within a given approximation, for all the examples. It points very clearly 
at the main difficulty of induction in this case: given N objects, the best way to 
recognize them with a 100% accuracy is to memorize them without learning. 
Induction can then take the form of a hidden “learning by heart” where as many 
parameters as necessary are introduced in order to simply “fit the data” without a 
new model being really built. If we limit the power of the recognition device by 
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limiting its dVC, then we can ensure that a real amount of induction has been taking 
place. Notice however, that this result can be also interpreted as a negative result: if 
the space of hypotheses is weak enough to be unable to shatter more than dVC 
points, and if we are lucky enough to have been learning something, then this 
learning is proved to be conserved on new examples. The if-we-are-lucky-enough-
to-have-been-learning-something part is not so promising, especially since it exists 
another theorem, called familiarly the no free lunch theorem (Wolpert, 1996), 
stating that we have been indeed lucky to learn something. The no free lunch 
theorem states that, given a fixed induction device, the mean performance of this 
device on an infinity of problems is zero. Since one of the hypotheses of Vapnik-
Chervonenkis’ theorem is that we have been already learning something on some 
examples, the no free lunch theorem says that our chances to perform this feast are 
very feeble, except on very small subsets of problems. 

Symbolic inductive techniques may use continuous variables, but through a 
process of discretization (i.e., cutting into a finite number of intervals) build 
models in terms of discrete variables. As compared to a perceptron where the 
separating hyperplane can be moved at will, the only freedom we are left with is to 
move potentially separating hyperplanes perpendicular to the axis of the to-be-
discretized variable. The case of ILP is even more rigid: the predicates have to be 
defined beforehand, which means that the discretization process does not take place 
during learning, but before learning. In that sense, we can only decrease the dVC of 
our hypotheses spaces. Vapnik-Chervonenkis theorem then states that we need less 
many examples to learn correctly, if we did learn anything at all. It is quite striking 
to see that people in symbolic learning did not yet take the habit to evaluate the dVC 
of their hypotheses spaces, the most probable reason of it will be given in Section 
2.1, below. The main strength of symbolic induction is more of a social nature. If 
these discrete values make sense to a field expert (i.e., an expert in the field 
described by the variables, as opposed to the scientist who is expert in inductive 
symbolic techniques) the model is at least a little understandable by the field 
expert. In many cases, even symbolic techniques fail to provide an understandable 
model, but this is then looked upon as a failure of the inductive technique. As a 
research field, this gives an altogether completely different way towards 
improvement: accuracy of the results is interesting but looked upon more as a 
validation technique than as a goal in itself: a grossly inexact model cannot be 
worth studying, but a slightly less precise one is much more interesting, if more 
understandable by the field user. We agree that symbolization of the data produces 
a severe loss of discrimination power, and when the results of symbolic induction 
are not understandable, they are thus vastly inferior to numerical techniques. 
Inversely, if they are understandable, and if the problem requires comprehen-
sibility, then the price to pay is heavy but only symbolic methods can be used.  
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It is somewhat unexpected that a fifth option is available: it is in fact a mixed 
approach, combining symbolic and numeric knowledge. This is achieved by 
Bayesian networks that combine a symbolic structure expressing the dependencies 
between the variables, and numeric calculations of probability distributions. It is 
noticeable that their “deductive” power is very special since they implement both 
deduction (reasoning from the premises to the conclusions) and abduction, i.e., 
reasoning from the consequences to the premises. Inductive learning of structures 
and probability tables from data is an inductive problem we shall speak of in 
Section 3.6. 

Section 2 will discuss some properties of symbolic induction, Section 3 will 
present the problems of inductive text mining, Section 4 shows how the texts have 
to be preprocessed in order to transform them into datasets from which models of 
the texts can be built, and Section 5 will show various measures of “interest” for 
the rules induced from datasets, Bayesian networks being one of the very 
interesting options.  

2. PROBLEMS  WITH  THE  SEMANTICS  OF  THE  RULES  INDUCED  FROM DATA 

2.1. SYMBOLIC  AND  NUMERIC  GENERALITY 

Both symbolic and numeric induction evaluate the variation in generality, in 
a sense, this is the “generality distance” between the data and the model built. The 
definition of generality is however very different in the two communities.  

Numeric induction sees generalization as a measure of the rate of 
convergence of the learning process. It is intuitively obvious that the less many 
data points are needed to build a satisfying model, the larger the generalization 
abilities. We pointed out the contradiction that spaces of hypotheses with a small 
dVC will certainly have high generalization ability, but they will also solve a very 
small number of problems. Besides, the technique used by the SVM to solve non-
linear problems increases very rapidly the dimension of the data space. In fact, it 
could be believed that in non-linear cases, the good solution is to leave apart 
separation by hyperplanes, and to use higher degrees separating surfaces. It turns 
out that the SVM approach took the opposite solution. It kept the hyperplane 
separation, but it modified the representation space of the data by applying 
transformations to the coordinates of this space. For instance, the gravitation law in 
m1*m2 / r2 is not linear and could never be discovered by a perceptron. 
Nevertheless, by applying the coordinate transformation  

(m1, m2, r)  (log(m1), log(m2), log(r)) = (x, y, z) 
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Newton’s law becomes linear: x + y – 2z. These transformations have the property 
(not reflected by our example) that they tend to raise very rapidly the dimension of 
the space of the data. In a data space of dimension n, the separation by hyperplanes 
has dVC = n+1, hence these transformations, leading to very high dVC values could 
be seen as more harmful than useful. This is why Vapnik introduces the effective 
Vapnik-Chervonenkis dimension, dVCeff, which is such that, for a hyperplane in a 
space of dimension n,  

dVCeff ≤ min (n, (R/ρ)2) + 1. 

It follows that if the data are non linearly separable, n grows very rapidly due to the 
coordinate transformations performed, and if the “clouds” of data points are very 
near to each other (i.e., ρ is small), then the learning problem is not actually 
solvable. In opposition, even in the case of very high dimension representation 
spaces (in some cases, their dimension can be infinite), as long as the data are 
clearly separated in this space, the term (R/ρ)2 insures that learning can take place 
with a good rate of convergence. In other words, this approach defines the learning 
problem as a function of the data, and this explains the practical success of the 
SVM. To speak crudely, either the problem is relatively easy, n is quite small, and 
the generalization power is measured by n + 1, or the problem is relatively hard, n 
grows very rapidly, and the generalization power is measured by (R/ρ)2 + 1. 

 Generality is defined in a very different way within the symbolic settings. In 
fact, it uses definitions that can hardly lead to a distance measure. For instance, 
replacing a constant by a variable is a generalization, increasing the domain of a 
variable is a generalization, and the inverse operation are specializations. The 
inductive steps do not take place by modifying the orientation and distance to 
origin of a hyperplane, they take place by increasing or decreasing the degree of 
generality of a formula. This is the famous paradigm of “learning as search” 
developed by Tom Mitchell (1983) under the name of version spaces. Most 
symbolic learning systems use a version of this paradigm. The data are split into 
what is called positive examples (that illustrate the class to be learned) and negative 
examples that do not belong to the class to be learned. The positive examples are 
looked upon as the most particular expression, and learning proceeds by generating 
formulas of which the examples are instances, and of which the negative examples 
are not instances. This paradigm received very little critique until recently when it 
was shown (Giordana and Saitta, 2001) that this version space is very large, and 
there is only a little zone of which useful inductions can be drawn. This result tells 
us one must be weary of the place where the induction starts in the version space, 
but it does not destroy Mitchell’s principle of “learning as a search.” 

As a first conclusion, statistical induction learns coordinates of separating 
hyperplanes in a transformation of the original data descriptions, and symbolic 
induction learns formulas expressed in terms of the original data descriptions. Both 
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use accuracy as a leading path to successful inductions, and both validate their 
induction by their accuracy on a test set. Symbolic learning introduces also the 
notion of complexity of the induced formula, and its comprehensibility for a field 
expert. My main point here is as follows: if symbolic learning attempts to compete 
with the statistical learning on the terrain of accuracy, the SVM approach will 
always be better. Inversely, understandability is the strong point of symbolic 
learning, and the field should pay more attention in judging the results in 
accordance with this criterion.  

As a second conclusion, let us stress out that the amount of generalization 
performed by a symbolic system is always somewhat arbitrary to evaluate 
numerically since it depends on the grain of each allowed generalization step. It 
should be nevertheless a part of the evaluation process. Of two systems that learn 
with the same precision, the most general one is the most promising for application 
to new unknown data, and to “explain” them, the less general one explains  
the actual data with more details. Both have their merit from the explanatory  
point of view, but it should be known if the induction algorithm provides the one or 
the other. 

As a third conclusion, it is relatively easy to analyze the cases where 
statistical learning is able to show some understandability. The result of a SVM is a 
hyperplane that discriminates the data with the largest possible ρ, in order to 
increase the speed of convergence of the induction process, as shown by the 
Novikoff-Vapnik formula given above, since it decreases the value of dVCeff. It may 
happen that this hyperplane is perpendicular to one of the coordinate axes, and if 
this axis describes a comprehensible variation, then it can be understood by the 
field user. But this situation describes a case where symbolic learning will work 
very well, in other words, a case where all the refinements of numerical learning 
are not needed. When these refinements are needed, then the separating 
hyperplanes are not perpendicular to any axis, and their “meaning” is the one of a 
linear combination of many variables that usually highly obscure the field expert 
who presented his/her data as defined by the values of the non transformed, non 
combined variables. 

Let us now consider some problems linked to the generation of rules from 
data, and especially from data generated by a text analysis. 

2.2. HEMPEL’S  PARADOX  AND  THE  THEORY  OF  CONFIRMATION 

Hempel underlines the existence of the contraposition associated to each 
theorem as shown below: 

A fi B ~ ¬ A ∨ B ~ ¬ A ∨ ¬ ¬ B ~ ¬ ¬ B ∨ ¬ A ~ ¬ B fi ¬ A 
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The existence of a contraposition proves that any theorem is confirmed by the 

simultaneous observation of both premise and conclusion, as well as by the 
simultaneous observation of both negation of premise and negation of conclusion. 
For example: 

∀ x (crow (x) fi black(x)) ~ ∀ x (¬ black(x) fi ¬ crow (x)) 
confirmed by the observation of 

crow(A), black(A) 
 confirmed by the observation of ¬crow(B), 

¬black(B) 
example: white(B), shoe(B) 

Induction generates hypotheses that have to be confirmed by observation of 
the reality, but Hempel’s paradox tells us that so many things confirm any crazy 
hypothesis that confirmation by counting of instances is simply impossible, thus 
automatization of induction (which has to rely on some sort of counting) is absurd.  

In order to show how automatic induction has been nevertheless possible, it 
is necessary to consider that induction contains complex chains of reasoning steps 
(Kodratoff & Bisson, 1992, Kodratoff, 1994), and an analysis of this complexity 
leads to a better understanding of the conditions into which safe confirmation can 
be performed. Let me now summarize this argument. The first remark is that a 
specific semantic (or meaning) is associated to an implication, and Hempel’s 
paradox holds in a different way depending on the semantics. If the implication is 
relative to the description of the properties of an object, such as the black crow 
above, then there is little to discuss: the “descriptive theorem”  
∀x (crow (x) fi black(x)) is indeed a theorem from the deductive point of view 
(the contraposition of such a theorem is valid: for instance, if anything is not black, 
obviously it is not a crow) but it is not a real theorem from the inductive point of 
view since it is not confirmed by instances of its contraposition. This is why, when 
dealing with induction, we have to make the difference between the descriptive 
theorems, and what we call causal theorems, where the implication carries a causal 
meaning. Due to the fact that Science has been concerned until now with the 
automation of deduction, the difference between descriptive and causal theorems is 
not acknowledged. 

2.3. IMPLICATIONS  THAT  CARRY  THE  MEANING  OF  CAUSALITY 

Consider the implications that represent a causal relationship, such as  
∀x (smokes(x) fi cancer(x)) with probability p. There is no point in calling 

on Hempel’s paradox here, since indeed, observing (¬smokes(A)) & (¬cancer(A)) 
confirms also this theorem, as it should. It must be however noticed that spurious 
causes can introduce again a paradox. For instance the theorem: 
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∀x (smokes(x) & French(x) fi cancer(x)) is absurdly confirmed by 
observing (¬smokes(A) ∨ ¬French(A)) & (¬cancer (A)) meaning that, say, a 
German who has no cancer confirms this theorem. A simple analysis of the 
correlations (see the definition of a spurious dependency, in Section 5.5, below) 

will show easily that nationality has nothing to do with the link between smoking 
and cancer. A striking example of this problem has been given recently by the so-
called “French paradox” stating that Frenchmen had a higher cholesterol count than 
Americans and they would nevertheless die less of heart attack. It was called very 
aptly a “paradox” because the fact of being French has obviously no causal role, 
and the real cause has been found in some typical French habits. 

Another disputable argument is that the conjunction of causes is dangerous, 
for instance: 

∀x (smokes(x) & drinks-alcohol(x) fi cancer(x)) is confirmed by 
((¬smokes(A) ∨ ¬drinks-alcohol (A)) & ¬cancer (A)) which is confirmed by any 
person who does not drink and has no cancer. The counter-argument here is that 
the “medical and” is not really a logical conjunct. Actually, here, drinking 
increases the unhealthy effect of smoking and we have to confirm two independent 
theorems, one stating that 

∀x (smokes(x) fi cancer(x)), and the other one that 
∀x (drinks-alcohol(x) fi aggravates (cancer, cause_is_smoking, x)). 
More generally, the paradox originates here from a false knowledge 

representation, and it will indeed lead to absurdities,1 but this is not especially 
linked to the theory of confirmation. In other words, the implication using a logical 
and is false, and it is confirmed by almost anything, as it should be. Inversely, 
when two conditions are simultaneously necessary to cause a third one, say, as in 
stress & age>45 fi heart condition (where we suppose that both stress and aging 
are causal), then the disjunction in the contraposition is no longer paradoxical. 

In short, in the case of causal implications, absurd confirmations are avoided 
by a careful examination of the meaning of the implication. Simple counting might 
be dangerous, but there are enough statistical methods to avoid easily the trap of 
Hempel’s paradox. 

2.4. PRACTICAL  CONSEQUENCES 

 
1 There is another famous argument against induction, namely that observing that 1. drinking 

vodka with water makes you drunk, 2. drinking gin with water makes you drunk, leads to the 
generalization that drinking water makes you drunk. Some claim: “This generalization is obviously 
absurd, hence generalization is absurd.” I leave to the reader to show that, again, this argument is due 
to a bad knowledge representation where the word with is represented by a logical and- which is 
indeed absurd!. 
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All that shows how Science has been able to build theories using 
confirmation, in spite of Hempel’s paradox. Unfortunately it also shows how 
unreliable some confirmation measurements that are automatically performed 
might be. 

Suppose you are looking for implications A fi B (i.e., associations) coming 

from a taxonomy of generality, i.e., with inherited property semantics, such as, for 
example, dog fi canine. Then only the couples (A,B) confirm this hypothesis, and 
the couples (A,¬B) disconfirm it. Thus, the probability of confirmation for A fi B 
should be estimated by counting the number of corresponding items (let # be the 
counting function, and N be the total number of items) and approximated by the 
value: (# (A,B) – # (A,¬B)) / N.  

Inversely, suppose you are looking for implications A fi B with a causal 
semantics. They are confirmed by all couples (A,B) and (¬A,¬B), and they are 
disconfirmed by all couples (A,¬B). The probability of the confirmation of A fi B 
should then be approximated by (# (A,B) + # (¬A,¬B) – 2*(# (A,¬B)) / N. These 
remarks will explain the changes I propose to the classical definitions of coverage 
and confidence in section 5.3.2. and 5.3.3. 

3. INDUCTIVE  TEXT  MINING 

The discovery of interesting rules is an especially difficult case for Inductive 
Text Mining (ITM). This is due to the fact that texts tend to be speak of a specific 
topic, and the number of topics they do not speak of is almost infinite. Therefore, 
the amount of patterns that express relationships among topics that are NOT dealt 
with in the texts is normally overwhelming (with a very high cover and a very high 
precision). This results in a flood of patterns. One way to save and extract the 
interesting (and useful) patterns is by using a measure of interest. Another 
difficulty comes from the fact that natural language uses thousands of different 
terms even in relatively rigid settings. At present pattern discovery systems are 
unable to deal with this level of variety. One solution is to define classes of terms, 
and then to look for patterns among these less numerous classes of terms. It is even 
possible that these classes have meaning for the expert reading these texts. These 
classes are then called concepts. It is obviously interesting to discover unknown 
patterns among concepts that are meaningful to an expert. It follows that the 
building of ontologies makes ITM possible and makes its results more interesting – 
when the defined classes are indeed interesting for someone. 

The Inductive Text Mining (ITM) approach we propose in this paper puts the 
Data Mining (DM) phase after a learning phase.  
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The learning phase is as follows. Gather a large quantity of the kind of texts 
you want to mine. Perform a syntactic analysis on these texts. Built taxonomies of 
concepts by an interaction between a field expert and the results of the syntactic 
analysis. In each of the texts, note the apparition of each concept, and build up a 
table that gives the probability of appearance of each concept in each text. The 
probability of appearance of a concept is approximated by the number of times the 
concept appears in the text, divided by the total number of concepts appearing in 

the text. The text is now reduced to one record in a table, the fields of which are 
labeled by the concepts, and the items of which are the probabilities of appearance 
of each concept in this text (= in this record).  

Clearly, the only new step during the learning phase is the building of a 
taxonomy of concepts. The second section of this paper explains how we perform 
this step. The DM then takes place in a straightforward way. Apply DM techniques 
to the table obtained during the learning phase. The kind of DM we consider here 
is the detection of patterns in the data, most often called association detection. It 
looks for the dependencies among values of the fields. In Section 5, we study 
various methods for detecting such dependencies, including the building of a 
Bayesian network from data, and new dependency measures. 

4. BUILDING  ONTOLOGIES  FROM  TEXTS 

In our case, the ontology is reduced to a special subform: a graph, or a 
taxonomy, of generality relations among concepts. The generality relationships are 
most often in the form of a graph because of the polysemy of the words. The word 
“problem”, for instance, can be an instance of a concept referring to ‘activity’ 
(technical problems to solve), an instance of a concept referring to ‘relations’ 
(problems with other people), or an instance of a concept referring to the 
’individual’ (personal problems).  

Faure and Nédellec (1999) have developed a system, ASIUM, that is able to 
build such generality graphs. The text is submitted to a syntactic analysis, and all 
nouns found in the same syntactic position (say, all the nouns that are direct object 
of verb ‘to move’, or all nouns associated with adjective ‘movable’) are put into the 
same base classes. ASIUM is provided with a distance measure between classes 
and can offer its user the opportunity to merge the nearest base classes into a 
concept class. When the user accepts a new concept, then the base classes are 
validated as significant, and the new concept is created. This process can be 
iterated several times, thus creating concepts of higher and higher levels of 
generality. The process is interactive, and the user can accept or reject new 
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proposed classes, and he or she can also reject a chosen noun as not belonging to 
the class. ASIUM is able to point out useful classes that actually exist in the texts, 
which is especially useful as the field expert is not always able to provide them all.  

To go further in this process, we are presently producing a system, called 
Rowan, that generates taxonomies, in place of generality graphs. However, the cost 
for this is quite high due to the amount of work involved. Rowan collects each 
syntactic position into which a noun belongs to a given concept. The number of 
such positions is very large as soon as the style of the texts is complex enough. 
Rowan is still under development. It has been until now applied to only one corpus 
of 6 megabytes of text. These texts belong to the company Performanse, 

specialized in human resources. This company uses batteries of psychological tests, 
but their specificity lies in their concern for showing the results of the test to the 
testees, under the form of a text that has been especially tailored so as to  
be seen as neutral by the testee. Discussion of this text with the psychologist  
then takes place, and the final result is a new text upon which testee and 
psychologist agree.  

To better understand the complexity of the work involved in Rowan, consider 
the following example that gives some results relative to the word ‘environment’. 
The word ‘environment’ is recognized in a total of 2367 different syntactic 
situations. It is used as an agent of a verb 35 times, as the (direct) object of a verb 
1084 times, 190 times as the subject of a verb, and 1058 times in a noun-noun or a 
noun-adjective link. There are 53 noun-adjective links, among them it is used 9 
times in ‘understanding environment’, 6 times in ‘able environment’, etc., until it is 
used 30 times in a link appearing only once in the texts, such as ‘relaxed 
environment’. It appears thus in 1058 – 53 = 1005 noun-noun links. Among those, 
170 are used only once. Verifying that all these links refer to a concept is a very 
tedious task. 

As the word environment appears in the texts, it characterizes no less than 8 
different concepts. This is specific to the style of the writer, and it does not intend 
to give general laws about the way the word environment should be used by 
someone else. It is a leaf of  

– concept belonging when used as ‘supporting environment’; 
– concept communication when used as ‘attitude of the environment’, ‘to 

react in favor of the environment’, etc.; 
– concept expansion when used as ‘communication with the environment’, 

etc.; 
– concept hierarchy when used as ‘authority in the environment’, 

dynamization of the environment’, etc.; 
– concept independence when used as ‘personal environment’; 
– concept influence when used as ’to dynamize the environment’ etc.; 
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– concept relational when used as ‘action of the environment’, ‘cohesion 
with the environment’, etc.; 

– concept stress when used as ‘conflict with the environment’, ‘crisis in the 
environment’, ’tension in the environment’, etc. 

The influence of the author’s style is particularly clear here when he uses 
‘dynamization’ in the context of hierarchy, and ‘to dynamize’ in the context of 
influence (within a hierarchical relation or not). The care taken by Performanse’s 
psychologist to write sentences addressing individual situations reflects in the 
following figures: the total number of syntactic relationships in the text is 90630, 
and the number of syntactic relationships appearing only once in the corpus  
is 50793. In other words, more than half of the sentences use a unique  
grammatical form. 

The final taxonomy contains the thousands of relations characterizing the 12 
concepts of interest to Performanse. As a matter of fact, and in its present state, 
Rowan is nothing but a friendly interface helping the user to check these thousands 
of relations against the actual sentences given in the texts. This large amount of 
work is the price to pay to be able to extract information from texts: there is no 
cheap way to handle natural language. 

These results open the way to more research, as follows. 
We thus succeeded in building a taxonomy of concepts, and we will be able, 

on this specific corpus, to find the occurrences of concepts in the texts. This is an 
obviously interesting goal, but we do not intend to stay at this stage. Each 
taxonomy building, for each corpus, will ask for the same amount of effort. It is 
therefore important to study what uses these existing taxonomies can have. There is 
a large amount of work already done in the use of ontologies. Nevertheless, usual 
ontologies do not mix up terms and syntactical positions, and a complete re-
examination of the use of our taxonomies is to be undertaken. Another obvious task 
to perform is building subcategorization frames out of the taxonomy. Our frames 
will not hinge around the verbs only. For instance, a set of adjectives can hinge 
around a noun, the combination noun-{set-of-adjectives} all belonging to the same 
concept. The next step is the building of semantic schemes by properly 
generalizing the “hinging” sets among themselves. For instance, from the frames  
noun1-{set-of-adjectives1} and noun2-{set-of-adjectives2}, it is possible to find 
the scheme noun1-{set-of-adjectives1-2}-noun2, where {set-of-adjectives1-2} is a 
generalization of the two sets of adjectives. Once this learning has taken place, it is 
possible to work the other way round on a new corpus: check if the frames and 
schemes found are still valid. Old schemes can be accepted as such, rejected, or 
modified, in any case reducing the amount of work needed to build a new 
taxonomy for a next corpus. 
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5. “INTERESTING”  ASSOCIATIONS 

5.1. INTERESTING = RELEVANT  (SOCIAL  PROPERTIES) + RARITY  (STATISTICAL 
PROPERTIES) 

First, it seems necessary to focus somewhat on the definition of interesting. 
This word contains so many personal or social connotations that it can hardly be 
used in a scientific context. We nevertheless said above that 12 concepts were of 
“interest” for Performanse. The field expert, in this case the Performanse’s chief 
psychologist who conceived the method for generating the texts, usually has a very 
precise idea of what is relevant or not. The field expert thus provides the relevance, 
and finding relations among relevant (or non-relevant fields) of the database is the 
responsibility of this expert. 

Now consider a property П of the data, and suppose that this property is 
relevant. This property obviously takes a mean value on the data, MП, and its 
distribution shows a standard deviation σП. Now the patterns that show the value 
MП for П are less statistically surprising that the patterns showing a value, say, 
greater than MП + σП. This is why I suggest following a simple path: call 
interesting the patterns showing a value of property П greater than MП + p*σП, 
where p is a coefficient indicating the ‘size’ of the surprise asked from the data to 
be deemed ‘interesting’. Note that several authors have already been using this 
approach. However, they usually try to find a general value for σП, one that is valid 
for all sorts of data, which is obviously impossible. 

For instance, on the example set known as “mushrooms”, a classical database 
available on line, the most surprising associations (see our definition of ‘surprise’ 
below) shows a value, for П = surprise, equal to MП + 4.168 * σП.  

Inversely, it might be that we are interested in finding the most standard 
instances of a property that show the most often. In that case, call a normal pattern 
those showing a value of property П less than MП + p*σП, where p should be less 
than 1. An instance of a measure for which normality is desirable will be described 
below in Section 5.5. It uses concepts describing a Bayesian network. 

5.2. A  REVIEW  OF  THE MOST  USUAL  PROPERTIES  П  FOUND  IN  THE LITERATURE  
(see (Brin et al., 1997; Lavrac et al., 1999) 

All measures relative to discrete or boolean valued descriptors are 
summarized by the following diagram. 

 

Fig. 1. – Diagram showing P(B,H) and  
P(B, ¬ H). 
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Consider that we are trying to “discover” a pattern of the form Body ⇒ Head 

(also called ‘association between two items’). The support of [B ⇒ H] is defined 
as Supp(B ⇒ H) = P(B,H). This expresses the probability that B and H will be 
True together. Notice that when P(B) and P(H) are both very large (i.e., they 
determine a field containing almost only 1s in the DB), it is somewhat meaningless 

to study their relationship: their support is always very large. 
The confidence in [B ⇒ H] is defined as P(B,H) / P(B) = P(H | B). This 

expresses the conditional probability that H will be True, knowing B is True. 
The conviction associated to [B ⇒ H] is defined as P(B) * P(¬H) / P(B,¬H). 

When B is True and H is False, then [B ⇒ H] is disconfirmed. This is why the 
larger P(B,¬H) is, the lower the conviction. Suppose that P(H) is tiny (hence  
P(¬ H) is large), then a large P(B, H) can hardly be due to simple chance, and we 
have more conviction in favor of [B ⇒ H]. Thus, the larger the support of P(¬ H), 
the larger the conviction. 

The ‘interest’ of [B ⇒ H] is defined as P(B,H) / [P(B) * P(H)] = P(H | B) / 
P(H). The more probable P(B) and P(H) are, the less interesting is their intersection 
since it is expected to be always large, as we already pointed out in defining the 
support. 

The dependency-1 (the classical dependency measure) of H upon B is 
defined as Abs( P(H | B) – P(H)) if P(B) ≠ 0, where Abs is the function absolute 
value. If B is not absurd, i.e., its probability of occurrence is not zero, which this 
means that P(H | B) = P(B,H) / P(B) is computable, then the probability of meeting 
H given B should increase when B ⇒ H. The greater the difference between  
P(H | B) and P(H) the greater the strength of the dependency. It is interesting  
to discuss a few properties of dependency in order to understand exactly what  
it evaluates. 

By definition, dependency is small when P(H) is large.  

Three cases are particularly interesting. In all three cases, the body is 
supposed to be almost perfectly included in the head, thus P(HB) = 1. 

Fig. 2. – Three cases asking for different 
measures of dependency. 

14 



Logique 117 

In case 1, P(H) is small, thus case 1 is the one of a large dependency.  
In case 2, B is “drowned” in H’ and is intuitively normal that H’ depends 

much less from B than H does. The dependency, 1 – P(H’), is low, as it should.  
In case 3, P(H’) and P(B’) are both very large and their dependency is more 

“uninteresting” than small. In this case, it follows that the dependency-1 measure 
has no intuitive meaning. 

It is often said that “dependency is the discrete equivalent to correlation.” 
This statement is to be used carefully since numerical correlation of two variables x 
and y is symetrical, while dependency is not. In fact, dependency (B, H) = 

dependency(H, B) * (P(H) / P(B)). 
Moreover, dependency is measured between values of variables, not between 

variables. For instance, weight and size are correlated, but this correlation is very 
clear for high and low values of these variables. It might well be that the values of 
the discretized variables, height = medium, size = medium, are totally independent. 

The dependency-2 (also called novelty) of H upon B is defined as P(B,H) – 
(P(B) * P(H)). If B and H are independent, the expected value of P(B,H) is P(B) * 
P(H), hence the difference between these two values expresses how far from 
independence are B and H. This is indeed a measure of dependency. Note however 
that dependency-2 = P(B) * dependency-1. It follows that dependency-2 will favor 
implications [B ⇒ H] such that P(B) is large, hence less rare than the ones where 
P(B) can also be small. Dependency-2 thus compensates the defaults of 
dependency-1 when P(B) is large as in case 3, (and this is exactly the case where 
large dependencies are not interesting), but will spoil the good behavior of 
dependency-1 in case 1 and 2. 

The dependency-3 (also called satisfaction) of H upon B is defined by 
(P(¬H) – P(¬H | B)) / P(¬H) which the same as (P(H | B) – P(H)) / (1 - P(H)). 
Instead of multiplying dependency-1 by P(B) as in dependency-2, we now divide 
by (1 – P(H)). Thus, the so-called satisfaction is again a dependency. It behaves 
quite well in cases 2 and 3, because it takes into account the fact that P(H) is large 
(and we divide by the small quantity 1 – P(H)). Inversely, in case 1, dependency-3 
will be very small, even when B and H are indeed very dependent of each other. In 
other words, dependency-3 favors the implications such that P(H) is large. 

The interest of detecting implications with large support follows from the fact 
that if an implication has too little support, it might very well happen that it is then 
confirmed by a very small number of instances, that come from noise only. 
Besides, this measure finds a fast generalization to implications between several 
items (of the form  

[A & B & … ⇒ A’ & B’ & …]) which leads to the well-known APRIORI 
algorithm (Agrawal et al., 1993). 
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A large amount of research has been done around this algorithm, based on the 
assumption that only associations with a support larger than a fixed value are 
interesting. 

This approach can be criticized from two directions. Firstly, these systems 
can detect spurious associations that are pure errors due to this approach. Secondly, 
associations with large support can be not very surprising, since they are relative to 
a large part of the population. For instance, on the example set “mushrooms”, 
already cited, the most surprising association (see our definition of surprise below) 
has a support of 0.000985, and it is thus impossible to detect with a support-based 
technique. Inversely, a high value of the surprise does not automatically mean low 

support. For instance, a rule found by all systems, ‘odor_foul  poisonous,’ shows 
a surprise of M + 1.941*σ, and a support of 0.266. Among the most surprising 
rules of surprise value = M +3.698*σ, there is even a rule of support 0.694. 

Notice that this criticism is invalid for the use of APRIORI-like algorithms in 
the detection of sequences. In the representation promoted by Agrawal (Agrawal 
and Sikrant, 1995; Sikrant and Agrawal, 1996), it is obvious that only the instances 
that are often repeated can be part of a sequence, hence their support must be large, 
otherwise they are isolated facts, not part of a sequence. 

5.3. DESCRIPTION  OF  SOME  LESS  USUAL  PROPERTIES  П 

5.3.1. Statistical  surprise 

A less classical property Пis what we call ‘surprise’. The statistical surprise 
of [B ⇒ H] is defined as (P(B, H) – P(B,¬H)) / P(H). As in the case of conviction, 
it is noticed that the larger P(B, H), the more [B ⇒ H] is confirmed, while  
the larger P(B,¬H), the more [B ⇒ H] is disconfirmed. The exact value of  
the confirmation is thus given by (P(B, H) – P(B,¬H). Further, the larger P(H),  
the more probable it can contain small subsets that will imply it trivially. It is 
therefore more surprising to find an implication with a large confirmation when 
P(H) is small. 

Many oppose to the use of P(B, H) - P(B,¬H) because P(B, H) + P(B,¬H) = 
P(B), hence P(B, H) – P(B,¬H) = 2 * P(B, H) – P(B). Clearly, this last expression 
has no interesting semantics, but each formula above could be made meaningless 
by a similar manipulation.  

Making the difference between the confirmation and the disconfirmation can 
give the additional advantage that the noise distribution on P(B, H)  and on 
P(B,¬H) should be very similar, hence their difference should be more stable 
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against the noise than the individual values. A large drawback of this measure is 
that it generalizes very poorly to implications among several items. This is why we 
need to consider the building of Bayesian networks, giving an exact form of the 
possible combinations among multiple items. 

5.3.2. Including  disconfirmation 

All measurements can include the idea that disconfirmation decreases the 
value of the measurement, as we did in defining the statistical surprise. It is quite 
easy to define an effective support by P(B,H) – P(B,¬H). However, extending this 
notion to other measures is difficult since we do not know how to treat the extra 
term P(B,¬H). This is why we rather chose to introduce a coefficient k defining the 

amount of disconfirmation we can stand without changing the definitions.  
Hence, the effective support is defined by: SuppEff(B ⇒ H) = IF P(B,H) < 

k*P(B, ¬H) THEN 0 ELSE P(B,H). The (confirming) support has to be at least k 
times larger than (disconfirming) P(B, ¬H) to be looked upon as different from 0. 
Notice that this definition does not keep the “good” properties that all combinations 
of n items have the same support (for instance: SuppEff(B, C ⇒ H) is possibly 
different from SuppEff(B ⇒ H, C)).  Nevertheless, is it still true that all 
combinations of n items have a support less or equal to a combination of n-1 items. 
For instance, SuppEff(B ⇒ H, C) is ≤ SuppEff(B ⇒ H), since P(B, ¬C) can only 
decrease the effective support of B ⇒ H, C. This can be trivially proved by 
induction on n. 

The effective confidence is defined as ConfEff(B;H) = IF SuppEff(B ⇒  
⇒H) = 0 THEN 0 ELSE P(H|B).  

The effective dependance-1 is defined as DepEff(B;H) = IF SuppEff(B ⇒ 
⇒H) = 0 THEN 0 ELSE abs( P(H|B) – P(H). 

5.3.3. Including  contraposition 

We include now the values of the contraposition. We explained in section 1 
that it amounts to giving the semantics of causality to the confirmation measures, 
this is why we shall say these measures are causal. 

The causal effective support is defined by IF P(B,H) + P(¬B, ¬H) < 
< 2k*P(B, ¬H) THEN 0 ELSE P(B,H) + P(¬B, ¬H). 

The causal effective confidence is defined by P(B,H)/P(B) + P(¬B, 
¬H)/P(¬H) if the causal effective support is not 0. 
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The causal effective dependance is defined by abs(P(H|B) – P(H)) + 
+ abs(P(¬B|¬H) – P(¬B)) if the causal effective support is not 0. 

5.4. ANALYSIS  OF  SOME  RESULTS  RELATIVE  TO  THE  ‘MUSHROOM’  DATABASE 

It should be clear that our first condition for obtaining interesting relations 
from this DB is not fulfilled: except mycologists nobody has any interest in the 
concepts contained in this DB. Thus, this section aims simply at exemplifying the 
properties of the various measures given in Section 5.3. 

The measurements were done with k = 3, i.e., a rule such that its confirmation 
is not higher than three times its disconfirmation will have its support and other 
values put to 0, as explained in Section 5.2. There are 195 rules of the form B ⇒ H, 
and such that the statistical surprise is greater than mean + standard deviation. We 
ordered them by value of their statistical surprise. Most of them show a value near 

1 for most measures except for those that are proportional to P(B) or P(H). 

Tables 1 and 2 present some of the rules we obtained: 
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Table  2  

Rule Rule # 
veil-color = yellow ⇒ stalk-color-above-ring = yellow 1 
ring-number = one ⇒ veil-type = partial 2 
odor = none ⇒ edible 3 
gill-attachment = free ⇒ gill-spacing = close 4 
edible ⇒ odor = none 5 
odor = foul ⇒ spore-print-color = chocolate 6 
odor = foul ⇒ poisonous 7 
gill-size = broad ⇒ edible 8 
poisonous ⇒ odor = foul 9 

The most surprising rule is a typical “nugget” of knowledge, meaning that it 
expresses a knowledge relative to a very small part of the data, but one which is 
never disconfirmed. The rule, IF veil-color = yellow ⇒stalk-color-above-ring = 
yellow, expresses a property that seems to be very specific of yellow veils, since 
there are many rules relative to white veils, none relating its colour to the one of 
the stalk. The value of P(B) is around 0.001, thus the so-called novelty is of the 
order of 0.001 since dependency-1 is near 1. Its support is also around 0.001, 
which means that only 8 samples of the 8000 contained in the DB show this 
property. This can be seen as tiny, but if we think in terms of large DB, say of  
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8 millions records, then it defines a population of 8 thousand records showing a 
quasi deterministic property. A very predictable population of 8000 individuals can 
be very important from a financial point of view. 

Let us now consider the rules linking edibility and odor. The rules odor = 
none ⇒ edible, and edible ⇒ odor = none are very near to each other, with a quite 
large support of 0.419. The first one seems to be somewhat less causal (effective 
causal dependency-1 = 0.708) that the second one (effective causal dependency-1= 
= 0.863). Inversely, the rules odor = foul ⇒ poisonous, and poisonous ⇒ odor = 
foul are very different. The first one shows a surprise of 1.941, and an effective 
causal dependency-1 of 0.547. The second one shows a very little surprise of 0,129 
and an effective causal dependency-1 of 0.000. This means that odor = foul is quite 
causal for the property of being poisonous. We do know that this causality is 
fortuitous but, still, it makes sense that foul odour is more causal for edibility than 
absence of odour.  

The rule ring-number = one ⇒ veil-type = partial illustrates the default of 
dependency-1 we have underlined. The value of P(H) is high (= 1.0), thus even 
with a P(H | B). of 1, dependency-1 is zero. In this case, that P(B)/ P(H) is equal to 
0.922 indicates that B is not a relatively small subset of H, and the dependency 

between the two is actually high. Neverthless, both are true for almost all 
mushrooms, and this dependency is trivial. Notice alos that the causal effective 
confidence is not computable, since P(¬H) = 0. 

The rule gill-attachment = free ⇒ gill-spacing = close shows a very high 
P(B) of 0.974, that is, almost all mushrooms have a free gill attachment. As a 
consequence, P(B, ¬H) is almost the same as P(¬H), and the limit value of 2*k* 
P(B, ¬H) is often reached, leading to a zero causal support, as happens in this rule 
where P(¬H) is around 0.16. Since we deal with probabilistic causalities, there is 
nothing wrong with the cause being more probable than its effect. There no real 
good reason for eliminating these causal effects, except that they are indeed very 
hard to detect from the data only: they are typical of the causes that need 
experiences to be detected. For instance, the probability of presence of oxygen, 
nitrogen, etc. in the atmosphere is always, one. Only experiments can tell what 
causes what, by creating data where, exactly my point here, these probabilities 
become low.  

Rule odor = foul ⇒ spore-print-color = chocolate illustrates the necessity to 
deal with effective supports. As you can see, all it classical indicators are quite 
high, but P(B, ¬H) happens to be quite high, and the confirmation is not more than 
three times the disconfirmation, hence the effective supports drops down to zero. 
Notice also that adding the contraposition changes completely these figures, 
hinting at the possibility of a causal relationship. 
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Rule gill-size = broad ⇒ edible illustrates the possibility that including the 
disconfirmation values eliminates both causal and non causal dependencies. 

5.5. WHY  BUILD  BAYESIAN  NETWORKS? 

Bayesian networks deal with a phenomenon that is not considered in the 
systems performing the detection of associations, the so-called spurious 
dependencies. 

Consider the case where the computations lead to accepting three 
implications as B ⇒ H, B ⇒ C, and C ⇒ H. Since B implies both H and C, H will 
be true when C is true, even if C is not causal to H, that is, even if the implication 
C ⇒ H does not hold in reality. If C is really causal for H, then H must be more 
frequent when B and C hold than when B alone holds, that is, P(H | B,C) must be 
higher than P(H | B). Hence the classical definition of a spurious dependency 
between C and H is: P(H | B,C) = P(H | B). In the vocabulary of Bayesian 
networks, it is said that, when P(H | B,C) = P(H | B) holds, H is independent of 
variable C for B given. In other words, H and C are conditionally independent, see 
for instance Jensen (1998). 

A Bayesian network is built in order to take into account all kinds of 
conditional dependency. For instance, in a Bayesian network such that P(H | B,C) = 
P(H | B), the ‘arrows’ B  C and B  H will be indicated in accordance with the 

implications B ⇒ C, and B ⇒ H, but the implication C ⇒ H, the spurious 
dependency, will not be marked by an arrow. Inversely, spuriousness is not 
checked by the systems that perform association detection. 

We are now able to provide an instance of a measure for which normality (as 
defined in Section 5.1 is desirable. Suppose we are given a Bayesian network and a 
set of data supposed to fit this network. Suppose also it shows the ‘arrows’ B  C 
and B  H, but no link between C and H. It is very important to be able to measure 
how much the absence of link between C and H is justified since this is the very 
reason of superiority of Bayesian networks over association detection. We must 
thus evaluate how much P(H | B,C) = P(H | B) holds. Instead of defining an 
arbitrary value under which the property (cf. 5.1) П = P(H | B,C) – P(H | B) is 
considered to be zero, we suggest to follow the procedure recommended in 5.1. 
Obviously, there is a coefficient here also, but this coefficient makes statistical 
sense since it represents the probability that a new item will fall within the defined 
range. In other words, it varies with the way the experimental data are distributed.  

Recently, Munteanu (Jouffe and Munteanu, 2000; Munteanu and Cau, 2000; 
see references therein to find the classical results in this field) has been showing 
that it is possible to directly build equivalence classes of Bayesian networks in a 
reasonable time. This opens the way for an alternate method for detecting 
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associations among multiple items: only those compatible with the Bayesian 
network supported by the data are evaluated. The main limitation of this approach 
is that it is strongly sensitive to the number of different fields it can deal with. A 
maximum of some 500 fields (or descriptors) seems already asking for a very long 
computing time. Another feature of this approach is that it demands a very large 
number of records, but this is easily met in most modern applications. 

6. CONCLUSION 

This paper proposes two refinements to the classical approaches to ITM. On 
the one hand, we claim that the problem of polysemy in ontology building must not 
be solved by using generality graphs to describe the concepts, as the ‘grain of the 
theory’ is then too coarse. We have to refine the theory in order to transform the 
graphs into taxonomies, and pay the price of the theory’s finer granularity which is 
a large amount of work, as done when using our software Rowan. It seems that the 
association of a noun with its syntactical context is enough to build taxonomies. 
This is, however, our working hypothesis and it has to be confirmed on more data. 
The next data we are going to analyze with Rowan are a set of introductions of 
KDD papers, and the Grimm tales (in English). These two sets should cover a quite 
large spectrum of possibilities of naturally produced texts. We will then be able to 
evaluate the amount of noise in the definition of the concepts that is still left after 
this work is done. 

On the other hand, the present day techniques for association detection seem 
largely inadequate since they detect relationships that have a support larger than a 
given threshold. Experience has shown that association with a tiny support can be 
very ‘interesting’ in some sense. The global strategy we recommend is the 
following: use a ‘Bayesian networks synthesis from data’ technique in order to 
obtain an overall idea of the network of relationships characterizing the texts. Then, 
evaluate the interest of each link with your favorite interestingness function. Our 
surprise function seems to show the important feature that it resists well to noise. 
Our preliminary measurements (complete results will be published elsewhere) 
show that the other measures tend to be sensitive to very low noise levels of the 
order of 1 to 2% of noise. Since there is absolutely no hope for detecting the 
presence of a concept in a text with such a low noise, this emphasizes even more 
the need for new techniques of association detection, already discussed for other 
reasons earlier in this paper. 

REFERENCES 

22 



Logique 125 

Agrawal R., R. Srikant R., Mining Sequential Patterns, in Proceedings of the 11th International 
Conference on Data Engineering (ICDE’95), Tapei, Taiwan, March 1995. 

Agrawal R., Imielinski T., Swami A., Mining Association Rules between Sets of Items in Large 
Database, in Proc. SIGMOD’93, pp. 207–216, Washington DC, USA, May 1993. 

Brin S., Motwani R., Ullman J. D., Tsur S., Dynamic Itemset Counting and Implication Rules for 
Market Basket Data, in Proc. SIGMOD’97, pp. 255–264, Tucson, Arizona, May 1997. 

Christianini N., Shawe-Taylor J., An Introduction to Support Vector Machines, Cambridge University 
Press, 2000. 

Faure D., Nédellec C., Knowledge Acquisition of Predicate Argument Structures from Technical 
Texts Using Machine Learning: the System ASIUM, in Fenser & Studer (Eds.), 11th European 
Workshop EKAW 99, 329–334, Springer-Verlag, 1999.  

Giordana A., Lorenza Saitta L., Phase Transitions in Relational Learning, Machine Learning Journal 
(to appear). 

Jensen F. V., An Introduction to Bayesian Networks, UCL Press, 1998. 
Jouffe L., Munteanu P., Smart-Greedy+: Apprentissage hybride de réseaux bayésiens, Colloque 

francophone sur l’apprentissage (CAP), St. Etienne, juin 2000.  
Lavrac N., Flach P., and Zupan B., Rule Evaluation Measures: A Unifying View, in Ninth 

International Workshop on Inductive Logic Programming (ILP’99), Vol. 1634 of Lecture 
Notes in Artificial Intelligence, pp. 174–185. Springer-Verlag, June 1999.  

Mitchell T., Learning and Problem Solving, Proc. IJCAI’83, pp. 1139–1151, 1983. 
Munteanu P., Cau D., Efficient Learning of Equivalence Classes of Bayesian Networks, 4th European 

Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD),  
pp. 96–105, Lyon, Sept. 2000. 

Srikant R., Agrawal R., Mining Sequential Patterns: Generalizations and Improvements, Proc. of the 
Fifth Int’l Conference on Extending Database Technology (EDBT), Avignon, France, March 
1996. 

Vapnik V., The Nature of Statistical learning Theory, Springer Verlag, 1995 
Wolpert D., The lack of a priori distinctions between learning algorithms, Neural Computation, 

8(7):1341–1390, 1996. 


