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ENTROPY – HISTORICAL ANALYSIS 

BORIS DRAGANOV* 

Abstract: The way of entropy concept in the case of the phenomenological and statistical 
analysis methods is completed. The analysis of entropy in the study of variational processes, discrete 
structures, fluctuation and dynamical systems is presented. 
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BASIC CONCEPTS 

In 1865, German physicist Clausius introduced the concept of entropy 
depending only on the initial and final states of a reversible process. If S1 and S2 are 
entropy values in the states 1 and 2, 
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In an irreversible cycle the smaller proportion of the initial value of entropy 
Q1 transforms to work. Then the expression of the entropy function for the 
reversible and irreversible processes is as follows: 

for the reversible 0,    0,dQ dQdS dS
T T

= = = =∫ ∫  

for an irreversible cycle ,    0,   0dQ dQdS dS
T T

> = <∫ ∫   
(2)

In general for the system it can be written 

0.dQ
T
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(3)

For the “external environment” which the system exchanges heat with as dQ 
has of opposite sign, we have 

0.dQ
T
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At the end of the cycle, both reversible and irreversible, there is no change in 
entropy as the system is returned to its initial state. For irreversible cycles, this means 
that the system transfers more heat to the environment, typically by converting 
mechanical energy into heat in the irreversible processes. Consequently, the entropy 
of the environment increases. 

That the change in entropy can be written as the sum of two terms: 

dS = deS + diS. (5)

Here deS – the change in the entropy of the system due to the exchange of 
energy and matter, and diS – the change in entropy due to irreversible processes within 
the system. For a closed system that does not exchange matter with the environment 
deS = dQ / T. The value deS can be positive or negative, and diS – only greater than 
or equal to zero. 

The evolution of an arbitrary state to a state of equilibrium is the result of 
irreversible processes. At equilibrium, these processes terminate. Thus, the non-
equilibrium state can be defined as one in which irreversible processes are forcing 
the system to evolve to a state of equilibrium. 

LOCAL ENTROPY PRODUCTION 

The second law of thermodynamics must be a local law. Divide the system 
into r pieces. Then 

diS = diS1 + diS2 + … + diSr ≥ 0 (6)

where deSk – the entropy production of the k-th, and for each k 

diSk ≥ 0. (7)

Undoubtedly, the statement that the entropy production in every part of the 
system caused by the irreversible processes, – positive value, is more stringent than 
the classical formulation of the second law (entropy of an isolated system can only 
increase or remain unchanged). Note that the second law of thermodynamics, 
formulated in such a manner does not require the system to be isolated. This is true 
for all systems independently of the boundary conditions. 

Local increase in entropy in continuous media may be determined using the 
entropy density s(x, t). As in case of total entropy ds = dis + des, and dis ≥ 0. We 
define the local entropy production as follows: 

( , ) 0.id sx t
dt

σ ≡ ≥
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For irreversible processes that can be studied experimentally, non-equilibrium 
thermodynamics is based on an explicit expression for σ. Before presenting  
this expression, we write the explicit equations of local power balance and local 
concentrations. 

MINIMUM ENTROPY PRODUCTION 

In a thermodynamic system, the various forces Fk (k = 1, 2, ..., n) correspond 
to different streams Ik. The system can be located far from equilibrium, keeping 
some forces Fk (k = 1, 2, ..., s) for fixed nonzero values and leaving the rest of the 
forces Fk (k = s + 1, ..., n) free. In this case, streams suitable withheld forces reach 
constant values (Ik = const, where k = 1, 2, ..., s), while the free forces reduce the 
respective streams to zero Ik = 0 (k = s + 1, ..., n). 

In the linear mode, the total entropy production of the systems for the flow of 
energy and matter ds / dt = ∫σdV (where σ – the generation of entropy) in the 
equilibrium state reaches a minimum value. This provision, the so-called “principle 
of least dissipation of entropy”, was proposed by Rayleigh. 

GIBBS FREE ENERGY AND CHEMICAL POTENTIAL 

A great contribution to the thermodynamics of chemical processes belongs to 
Josiah Willard Gibbs. He considered the heterogeneous system consisting of a 
number of homogeneous parts, each of which contained substances S1, S2, …, Sn 
with masses m1, m2, …, mn. 

Assuming that the change in energy dU of a homogeneous part should be 
proportional to the mass of matter dm1, dm2, …, dmn, Gibbs suggested the following 
equation, which is valid in any homogeneous part of the system: 

dU = TdS – pdV + μ1dm1 + μ2dm2 + …+ μndmn, (10)

where μk – the chemical potential. 
It is inconvenient to describe chemical reactions using the change of the mass 

of the reactants. It is much more familiar and easier to use for this change in the 
number of moles, since the rates of chemical reactions and diffusion laws easier to 
formulate using molar quantities. We write the equation (10) expressing the amount 
of substance in moles: 

dU = TdS – pdV + μ1dN1 + μ2dN2 + …+ μndNn. (11)

Taking into account the dependence (11) we have 
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For a closed system deNk = 0. The rate of chemical reaction by the component 
k is determined dNk / dt, so the entropy production can be written as follows: 
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dNd S
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= − μ >∑
 

(13)

To distinguish between external forces and the external environment, we 
express material changes in moles dNk as 

dNk = diNk + deNk, (14)

where diNk – changes due to irreversible processes, deNk – changes due to exchange 
of substances with the environment. 

Relation (14) allows to record the change in entropy for this process as 
follows: 
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i

dU pdV dU pdV Ad S d d
T T T T
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⎝ ⎠  
(15–16)

If dU + pdV = 0 then the transfer of particles leads to a change in entropy, 
given by the formula 

2 1 0id S d
T

μ −μ⎛ ⎞= − ξ >⎜ ⎟
⎝ ⎠  

(17)

The second law of thermodynamics requires that the value is positive, i.e. 
transfer of particles takes place from a field of high chemical potential to low chemical 
potential. This is the process of diffusion: the particles of high concentration 
transfer to low concentration. 

Above we were talking about homogeneous systems. Thermodynamic 
dependences can be formulated with the help of entropy sT(x), mk(x), which is a 
function of the temperature and density of number of moles. 

We express the energy and entropy density as a function of the local 
temperature T(x) and the density of number of moles nk(x) (both values are 
available for direct measurement) 

u = u[T(x), nk(x)], 
s = s[T(x), nk(x)]. (18)

The total entropy and the total energy of the system are obtained by integrating, 
respectively, the entropy density and energy density in terms of the system: 
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Since the whole system is not in thermodynamic equilibrium, the total entropy 
S is generally not a function of total energy U and the total volume V. However, the 
thermodynamic description remains possible if the temperature is well defined at 
each point in space. 

Isochoric-isothermal potential F = F(V, T, N, xi) of the Helmholtz free energy. 
Between the Gibbs free energy and Helmholtz free energy there is a relationship 

F = U – TS, 
H = V + pG, 
G = F + pV.  

(20)

With the help of these dependences it can be defined the conditions of 
thermodynamic equilibrium and stability. 

FUNDAMENTALS OF NON-EQUILIBRIUM THERMODYNAMICS 

The evolution of an arbitrary state to a state of equilibrium is the result of 
irreversible processes. The temperature in all parts of the system in this state becomes 
the same. 

However, the even temperature distribution is not one of the requirements 
under which the entropy and energy of the system is well-defined. For non-equilibrium 
systems, in which the temperature is not evenly distributed, but locally it is defined, 
we can introduce the density of such thermodynamic quantities (potentials) as 
energy and entropy. For example, the energy density 

U[T(x), nk(x)] = internal energy per unit volume (21)

can be determined by the local temperature T and a molar density nk(x) equal 
number of moles per unit volume. 

Similarly, the density of entropy s(T, nk) can be determined. Then, the total 
energy U, the total entropy S and the total number of moles N can be expressed by 
the corresponding density: 

[ ( ),  ( )] ,k
V

S s T x n x dV= ∫  (22)

[ ( ),  ( )] ,k
V

U u T x n x dV= ∫  (23)

N = nk(x)dV. (24)

In general, each of these variables – the total energy U, the entropy S, the 
number of moles N and the volume V – is not a function of the other three variables. 
Generally irreversible change diS is connected with flow of a quantity dX, e.g. heat 
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or substance during time dt. For dX = dQ, where dQ – the amount of heat that is 
transferred during dt; for dX = dN, where dN – number of moles of substance that 
have moved (transformed) for the time dt. In both cases, the change in entropy can 
be written as 

diS = FdX, (25)

where F – the thermodynamic force. In this formalism thermodynamic forces have 
to be recorded as functions of thermodynamic variables, such as temperature and 
concentration. For the flow of matter corresponding to the thermodynamic force 
can be expressed by analogy. All irreversible processes can be described in terms 
of thermodynamic forces and thermodynamic flows. Entropy changes are the sum 
of all the changes caused by the irreversible flows dXk, that allows us to generalize: 

0   or   0.i k
i k k k

k k

d S dXd S F dX F
dt dt

= ≥ = ≥∑ ∑  (26)

Inequality (26) expresses the second law of thermodynamics. Entropy production 
by every irreversible process is the product of the corresponding thermodynamic 
force Fk and flow Jk = dXk / dt. 

THE ENTROPY BALANCE EQUATION 

The derivation of the entropy balance should be based on the equation of 
conservation of energy balance by the number of moles. The last equation contains 
expressions for the entropy flow IS and entropy production σ, which is caused by 
irreversible processes, such as thermal conductivity, diffusion and chemical 
reaction. Entropy balance equation has the form 

s
ds J
dt

+∇⋅ = σ
 

(27)

To obtain the explicit form of JS and σ it is necessary to proceed as follows. 
To simplify this we consider the system in the absence of external fields and 
dissipation of kinetic energy due to convection or diffusion. Using Gibbs relation 

k kTds du dn= − μ∑  we can write: 

1 .k k

k

ds du dn
dt T dt T dt

μ
= − − ⋅∑

 
(28)

Now considering the balance equation for the number of moles and the internal 
energy balance equation where d(KE) / dt = 0, the expression can be written as 
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(29)

This equation can be simplified and written in the form (27), taking into 
account the following observations. Firstly, the affinity Aj of reaction j has the form 

.j k jk
k

A = − μ ν∑
 

(30)

Second, if g – scalar function and J – vector, then 

∇ · (gJ) = J · (Δg) + g(J · Δ). (31)

In view of (30) and (31), and after some straightforward transformations you 
can rewrite entropy balance (29) as follows: 
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Comparing this equation with (26), we obtain that 

u k k
s

k

J JJ
T T
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This expression – one of the options for the second law recording: σ > 0. 

GENERAL INFORMATION ABOUT THE STATISTICAL THERMODYNAMICS  
OF HAMILTON, THE THEORY OF ENSEMBLES 

In classical mechanics, the state of a point particles system is usually described 
by the coordinates q1, …, qs, and moments p1, …, ps. A particularly important role 
is played by the energy of the system, written in these variables. 

Usually it has the form 

H = Ei(p1, …, ps) + Vi(q1, …, qs), (35)

where the first term depends on pulses and is kinetic energy, and the second 
depends only on coordinate and corresponds to the potential energy. Equation (35) 
is a Hamiltonian function. The basic idea of ensemble concept introducing is that 
instead of a dynamical system, as it is customary in the Hamiltonian system, you 
consider the set of systems according to the same Hamiltonian. Gibbs ensemble 
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can be represented as a set of points in phase space. The evolution of the system 
state as a function of time is usually determined by the Hamiltonian H = p(q, p). 
Note that the Hamiltonian function is used in the classical calculus of variations to 
represent the Euler equation of mechanical systems motion in canonical form. 

The values p and q satisfy the equation of motion: 

,Hq
p

∂
=
∂

   .Hp
q

∂
=
∂

 (36)

We introduce generalized current vector in phase space ( , ).J q p=  
From equation (36), that 

0,q pdivI
q p
∂ ∂

= + ≡
∂ ∂

 (37)

i.e., phase fluid is not compressed. 
Differential form of the law of number of particles conservation is the equation 

of continuity in phase space: 

( ) 0,f div Jf
t

∂
+ =

∂
 

or (according to the conditions) 

0.f f fq p
t q p

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (38)

Equation (38) is called the Liouville equation. Its current components J = (q, p) 
are expressed as a function p, q (and possibly, t). The following notice is significant: 
the equation (38) does not contain any information other than that which follows 
from the equation of motion (36). It follows from the properties of partial 
differential equations of the first order. The solution (39) can be written as: 

f(q, p, t) = q0(q, p, t),   p0 = p0(q, p, t)  (39)

where the relationship between (q0, p0) and (q, p) is defined by (35), and f0 =  
f0(q0, p0) = f (t = 0) – the initial condition. 

Let f (q, p, t), 

[ ] 0,dS f
dt

=  (40)

where 

[ ] ln .S f f fdpdq= −∫  (41)
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Expression (40) is determined from (41) by differentiating 

[ ] (1 ln ) .dS f dff dpdq
dt dt

= −∫  (42)

Since, according to the Liouville equation 0.df
dt

=  It follows that the entropy 

defined by the distribution function ƒ does not change with time. 

THE BOLTZMANN EQUATION 

Analyzing the relationship between the microscopic behavior of the environment 
and the macroscopic laws of thermodynamics, Boltzmann introduced his famous 
relation between entropy and probability. 

S = k ln W,  (43)

where W – static mass of the state, described by a distribution function ƒ;  
k – Boltzmann constant. Detailed discussion and the formula (42) deduction were 
given by Ehrenfest. Further development of the various branches of science (statistical 
physics, information theory, etc.) confirms that depth knowledge of nature, which 
is inherent in the Boltzmann equation. 

Information interpretation of entropy can define distributions of statistical 
physics: the Gibbs canonical distributions, i.e. distribution corresponding to the 
maximum value of information. 

Einstein, using the Boltzmann idea in other way, proposed a formula for 
estimating the probability of fluctuations of thermodynamic quantities: 

P(Δs) = Zek / Δs, (44)

where Δs – the change in entropy associated with the fluctuation relative to state of 
equilibrium, Z – the normalized constant providing the sum of all probabilities 
equal to one. 

ENTROPY THEORY OF DYNAMICAL SYSTEMS 

One of the major directions of the entropy analysis method refers to the 
theory of probability information developed by Kolmogorov, who, using the basic 
tenets of the theory of information, introduced the concept of entropy theory of 
dynamical systems, also known as K-entropy, which is denoted by h. The formal 
definition of a typical for any physical situation K-system consists of the following: 
this is Hamiltonian system, wherein 



 Noesis 10 58 

h > 0. (45)
In general case h ≠ 0. 
Kolmogorov’s work on entropy has begun a rigorous analysis of dynamical 

systems in the limiting case. 
Here are the main properties of the K-entropy. 
1. Entropy h determines the rate of entropy change S as a result of the purely 

dynamic process of trajectories moving in phase space. 
2. The entropy h, the growth rate of local instability h0 and inverse time of 

tripping time correlations hс are of the same order: 

h ~ h0 ~ hс. (46)

Thus the physical meaning of K-entropy reveals. 
3. Entropy h is a metric invariant of the system, i.e. its value is not dependent 

on the method of phase space partitioning and coarsening. 
4. Systems with the same value of entropy h, in some sense isomorphic to 

each other, that is, the statistical laws of motion of such systems should be the same. 
The concept of entropy can be applied to the thermodynamic non-equilibrium 

states, if the deviation from equilibrium thermodynamics are small and it can be 
introduced the concept of local thermodynamic equilibrium in the small but still 
macroscopic scale. In general, the entropy of a nonequilibrium system is the sum of 
the entropies of its parts which are in local equilibrium. 

The thermodynamics of nonequilibrium processes allows more detailed study 
of the process of increasing entropy and calculate the amount of entropy generated 
per unit volume of time due to deviations from thermodynamic equilibrium. 

Statistical physics associates the entropy with the probability of the macroscopic 
state of the system. Entropy is defined by the logarithm of the statistical weight Ω 
of reduced equilibrium state:  

S = k ln Ω(E, N), (47)

where Ω(E, Ν) – number of quantum-mechanical equations in a narrow energy range 
ΔE near the value of energy Е of the system of N particles, in classical statistical 
physics Ω – the value of volumes in the phase space of the system for given E and N. 

First connection between the entropy and the probability of the system was 
established by Boltzmann. The evolution of a closed system is in the direction of 
the most probable distribution of energy for individual subsystems. Statistical 
physics considers a particular class of processes – the fluctuations for which the 
system becomes less likely position, and its entropy decreases. The presence of 
fluctuations shows that the law of entropy increase is only performed on average 
for a large period of time. 

The entropy in statistical physics is closely related to the information entropy, 
which is a measure of uncertainty messages (messages are described by many 
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variables х1, х2, ..., хп and probabilities Р1, Р2, ..., Рп of these values occurrence in 
the message). For a certain (discrete) statistical probability distribution Рk information 
entropy is called the value 

1
ln

n

k k k
k

S P P
=

= −∑    when   
1

1.
n

k
k

P
=

=∑  (48)

Sk = 0, if the number of Рk is equal to one, and the rest – to zero, i.e., the 
information is credible, there is no uncertainty. Entropy has the largest value when 
all Рk are the same (maximum uncertainty in the information). Information entropy, 
as a thermodynamic one, has the property of additivity. With the probabilistic 
interpretation of information entropy can be deduced basis of distribution of statistical 
physics: the canonical Gibbs distribution corresponding to the maximum value of 
information entropy. 

CONCLUSION 

Entropy is a measure of the energy loss (irreversible) of phenomena taking 
place in many areas of production: heat and mass transfer, physicochemical, dispersed 
structures, fluctuations etc. In the future, with the advent of new technical solutions 
entropy, no doubt, will be playing the role of valuation measure of excellence in 
the energy field of the investigated phenomena. 
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